• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Generating coherence-constrained multisensor signals using balanced mixing and spectrally smooth filters
 
  • Details
  • Full
Options
2021
Journal Article
Title

Generating coherence-constrained multisensor signals using balanced mixing and spectrally smooth filters

Abstract
The spatial properties of a noise field can be described by a spatial coherence function. Synthetic multichannel noise signals exhibiting a specific spatial coherence can be generated by properly mixing a set of uncorrelated, possibly non-stationary, signals. The mixing matrix can be obtained by decomposing the spatial coherence matrix. As proposed in a widely used method, the factorization can be performed by means of a Choleski or eigenvalue decomposition. In this work, the limitations of these two methods are discussed and addressed. In particular, specific properties of the mixing matrix are analyzed, namely, the spectral smoothness and the mix balance. The first quantifies the mixing matrix-filters variation across frequency and the second quantifies the number of input signals that contribute to each output signal. Three methods based on the unitary Procrustes solution are proposed to enhance the spectral smoothness, the mix balance, and both properties jointly. A performance evaluation confirms the improvements of the mixing matrix in terms of objective measures. Furthermore, the evaluation results show that the error between the target and the generated coherence is lowered by increasing the spectral smoothness of the mixing matrix.
Author(s)
Mirabilii, D.
Schlecht, S.J.
Habets, E.A.P.
Journal
Journal of the Acoustical Society of America : JASA  
DOI
10.1121/10.0003565
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024