• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Comparison of Aqueous- and Non-aqueous-based Binder Polymers and the Mixing Ratios for Zn//MnO2 Batteries with Mildly Acidic Aqueous Electrolytes
 
  • Details
  • Full
Options
2021
Journal Article
Title

Comparison of Aqueous- and Non-aqueous-based Binder Polymers and the Mixing Ratios for Zn//MnO2 Batteries with Mildly Acidic Aqueous Electrolytes

Abstract
Considering the literature for aqueous rechargeable Zn//MnO2 batteries with acidic electrolytes using the doctor blade coating of the active material (AM), carbon black (CB), and binder polymer (BP) for the positive electrode fabrication, different binder types with (non-)aqueous solvents were introduced so far. Furthermore, in most of the cases, relatively high passive material (CB+BP) shares ~30 wt% were applied. The first part of this work focuses on different selected BPs: polyacrylonitrile (PAN), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), cellulose acetate (CA), and nitrile butadiene rubber (NBR). They were used together with (non-)aqueous solvents: DI-water, methyl ethyl ketone (MEK), and dimethyl sulfoxide (DMSO). By performing mechanical, electrochemical and optical characterizations, a better overall performance of the BPs using aqueous solvents was found in aqueous 2 M ZnSO4 + 0.1 M MnSO4 electrolyte (i.e., BP LA133: 150 mAh·g−1 and 189 mWh·g−1 @ 160 mA·g−1). The second part focuses on the mixing ratio of the electrode components, aiming at the decrease of the commonly used passive material share of ~30 wt% for an industrial-oriented electrode fabrication, while still maintaining the electrochemical performance. Here, the absolute CB share and the CB/BP ratio are found to be important parameters for an application-oriented electrode fabrication (i.e., high energy/power applications).
Author(s)
Fitz, Oliver  
Ingenhoven, Stefan
Bischoff, Christian
Gentischer, Harald  
Birke, Kai Peter
Saracsan, D.
Biro, Daniel  
Journal
Batteries  
Open Access
File(s)
Download (6.97 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-r-269142
10.3390/batteries7020040
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Photovoltaik

  • SEM-EDX

  • Wasserstofftechnologie und elektrischer Energiespeicher

  • Batteriezelltechnologie

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024