Options
2021
Journal Article
Title
Detection of Breathing Movements of Preterm Neonates by Recording Their Abdominal Movements with a Time-of-Flight Camera
Abstract
In order to deliver an aerosolized drug in a breath-triggered manner, the initiation of the patient's inspiration needs to be detected. The best-known systems monitoring breathing patterns are based on flow sensors. However, due to their large dead space volume, flow sensors are not advisable for monitoring the breathing of (preterm) neonates. Newly-developed respiratory sensors, especially when contact-based (invasive), can be tested on (preterm) neonates only with great effort due to clinical and ethical hurdles. Therefore, a physiological model is highly desirable to validate these sensors. For developing such a system, abdominal movement data of (preterm) neonates are required. We recorded time sequences of five preterm neonates' abdominal movements with a time-of-flight camera and successfully extracted various breathing patterns and respiratory parameters. Several characteristic breathing patterns, such as forced breathing, sighing, apnea and crying, were identified from the movement data. Respiratory parameters, such as duration of inspiration and expiration, as well as respiratory rate and breathing movement over time, were also extracted. This work demonstrated that respiratory parameters of preterm neonates can be determined without contact. Therefore, such a system can be used for breathing detection to provide a trigger signal for breath-triggered drug release systems. Furthermore, based on the recorded data, a physiological abdominal movement model of preterm neonates can now be developed.