• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On Soft-Biometric Information Stored in Biometric Face Embeddings
 
  • Details
  • Full
Options
2021
Journal Article
Title

On Soft-Biometric Information Stored in Biometric Face Embeddings

Abstract
The success of modern face recognition systems is based on the advances of deeply-learned features. These embeddings aim to encode the identity of an individual such that these can be used for recognition. However, recent works have shown that more information beyond the user's identity is stored in these embeddings, such as demographics, image characteristics, and social traits. This raises privacy and bias concerns in face recognition. We investigate the predictability of 73 different soft-biometric attributes on three popular face embeddings with different learning principles. The experiments were conducted on two publicly available databases. For the evaluation, we trained a massive attribute classifier such that can accurately state the confidence of its predictions. This enables us to derive more sophisticated statements about the attribute predictability. The results demonstrate that the majority of the investigated attributes are encoded in face embeddings. For instance, a strong encoding was found for demographics, haircolors, hairstyles, beards, and accessories. Although face recognition embeddings are trained to be robust against non-permanent factors, we found that specifically these attributes are easily-predictable from face embeddings. We hope our findings will guide future works to develop more privacy-preserving and bias-mitigating face recognition technologies.
Author(s)
Terhörst, Philipp  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fährmann, Daniel  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
IEEE transactions on biometrics, behavior, and identity science  
Project(s)
ATHENE
Software Campus project
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Hessisches Ministerium für Wissenschaft und Kunst HMWK
Open Access
File(s)
Download (4.32 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1109/TBIOM.2021.3093920
10.24406/publica-r-268054
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Lead Topic- Digitized Work

  • Lead Topic- Visual Computing as a Service

  • Research Line- Computer vision (CV)

  • Research Line- Machine Learning (ML)

  • face recognition

  • biometrics

  • machine learning

  • deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024