• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On Soft-Biometric Information Stored in Biometric Face Embeddings
 
  • Details
  • Full
Options
2021
Journal Article
Titel

On Soft-Biometric Information Stored in Biometric Face Embeddings

Abstract
The success of modern face recognition systems is based on the advances of deeply-learned features. These embeddings aim to encode the identity of an individual such that these can be used for recognition. However, recent works have shown that more information beyond the user's identity is stored in these embeddings, such as demographics, image characteristics, and social traits. This raises privacy and bias concerns in face recognition. We investigate the predictability of 73 different soft-biometric attributes on three popular face embeddings with different learning principles. The experiments were conducted on two publicly available databases. For the evaluation, we trained a massive attribute classifier such that can accurately state the confidence of its predictions. This enables us to derive more sophisticated statements about the attribute predictability. The results demonstrate that the majority of the investigated attributes are encoded in face embeddings. For instance, a strong encoding was found for demographics, haircolors, hairstyles, beards, and accessories. Although face recognition embeddings are trained to be robust against non-permanent factors, we found that specifically these attributes are easily-predictable from face embeddings. We hope our findings will guide future works to develop more privacy-preserving and bias-mitigating face recognition technologies.
Author(s)
Terhörst, Philipp
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Fährmann, Daniel
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kirchbuchner, Florian
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kuijper, Arjan
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Zeitschrift
IEEE transactions on biometrics, behavior, and identity science
Project(s)
ATHENE
Software Campus project
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Hessisches Ministerium für Wissenschaft und Kunst HMWK
DOI
10.1109/TBIOM.2021.3093920
File(s)
N-638013.pdf (4.32 MB)
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Lead Topic- Digitized...

  • Lead Topic- Visual Co...

  • Research Line- Comput...

  • Research Line- Machin...

  • face recognition

  • biometrics

  • machine learning

  • deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022