• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. MAAD-Face: A Massively Annotated Attribute Dataset for Face Images
 
  • Details
  • Full
Options
2021
Journal Article
Title

MAAD-Face: A Massively Annotated Attribute Dataset for Face Images

Abstract
Soft-biometrics play an important role in face biometrics and related fields since these might lead to biased performances, threaten the user's privacy, or are valuable for commercial aspects. Current face databases are specifically constructed for the development of face recognition applications. Consequently, these databases contain a large number of face images but lack in the number of attribute annotations and the overall annotation correctness. In this work, we propose a novel annotation-transfer pipeline that allows to accurately transfer attribute annotations from multiple source datasets to a target dataset. The transfer is based on a massive attribute classifier that can accurately state its prediction confidence. Using these prediction confidences, a high correctness of the transferred annotations is ensured. Applying this pipeline to the VGGFace2 database, we propose the MAAD-Face annotation database. It consists of 3.3M faces of over 9k individuals and provides 123.9M attribute annotations of 47 different binary attributes. Consequently, it provides 15 and 137 times more attribute annotations than CelebA and LFW. Our investigation on the annotation quality by three human evaluators demonstrated the superiority of the MAAD-Face annotations over existing databases. Additionally, we make use of the large number of high-quality annotations from MAAD-Face to study the viability of soft-biometrics for recognition, providing insights into which attributes support genuine and imposter decisions. The MAAD-Face annotations dataset is publicly available.
Author(s)
Terhörst, Philipp  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fährmann, Daniel  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kolf, Jan Niklas  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
IEEE transactions on information forensics and security  
Project(s)
ATHENE
Software Campus project
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Hessisches Ministerium für Wissenschaft und Kunst HMWK
Open Access
File(s)
Download (5.51 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-r-268053
10.1109/TIFS.2021.3096120
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Lead Topic- Digitized Work

  • Lead Topic- Visual Computing as a Service

  • Research Line- Computer vision (CV)

  • Research Line- Machine Learning (ML)

  • biometrics

  • face recognition

  • deep learning

  • machine learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024