• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. CLEP: A hybrid data- and knowledge-driven framework for generating patient representations
 
  • Details
  • Full
Options
May 8, 2021
Journal Article
Title

CLEP: A hybrid data- and knowledge-driven framework for generating patient representations

Abstract
As machine learning and artificial intelligence increasingly attain a larger number of applications in the biomedical domain, at their core, their utility depends on the data used to train them. Due to the complexity and high dimensionality of biomedical data, there is a need for approaches that combine prior knowledge around known biological interactions with patient data. Here, we present CLinical Embedding of Patients (CLEP), a novel approach that generates new patient representations by leveraging both prior knowledge and patient-level data. First, given a patient-level dataset and a knowledge graph containing relations across features that can be mapped to the dataset, CLEP incorporates patients into the knowledge graph as new nodes connected to their most characteristic features. Next, CLEP employs knowledge graph embedding models to generate new patient representations that can ultimately be used for a variety of downstream tasks, ranging from clustering to classification. We demonstrate how using new patient representations generated by CLEP significantly improves performance in classifying between patients and healthy controls for a variety of machine learning models, as compared to the use of the original transcriptomics data. Furthermore, we also show how incorporating patients into a knowledge graph can foster the interpretation and identification of biological features characteristic of a specific disease or patient subgroup. Finally, we released CLEP as an open source Python package together with examples and documentation.
Author(s)
Bharadhwaj, Vinay Srinivas  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Ali, Mehdi
Universität Bonn
Birkenbihl, Colin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Mubeen, Sarah  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hofmann-Apitius, Martin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Hoyt, Charles Tapley
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Domingo-Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
Bioinformatics  
Project(s)
MLWin
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Open Access
File(s)
Download (3.54 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1093/bioinformatics/btab340
10.24406/publica-r-267746
Additional link
Full text
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • knowledge graphs

  • machine learning

  • knowledge graph embeddings

  • network biology

  • precision medicine

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024