• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Extension of the process limits in laser beam welding of thick-walled components using the Laser Multi-Pass Narrow-Gap welding (Laser-MPNG) on the example of the nickel-based material Alloy 617 occ
 
  • Details
  • Full
Options
2021
Journal Article
Title

Extension of the process limits in laser beam welding of thick-walled components using the Laser Multi-Pass Narrow-Gap welding (Laser-MPNG) on the example of the nickel-based material Alloy 617 occ

Abstract
The joining of thick-walled components using beam-based joining techniques is content of worldwide research and development activities, but has not yet been established in industry. State of the art to weld nickel super alloys is currently a TIG narrow-gap welding. The present paper is focusing on a new specific laser beam welding process, the so-called Laser Multi-Pass Narrow-Gap welding (Laser-MPNG). It first explains the process principle based on 2D beam oscillation, the use of fiber lasers and the multi-pass principle. The potential of the Laser-MPNG welding process is demonstrated using the technically significant nickel-based material Alloy 617 occ. As a result, it was possible for the first time to realize a weld with a wall thickness of 140 mm free of cracks or bonding defects. Promising results of creep and low-cycle fatigue tests are used to show the potential that Laser-MPNG welded joints would have for future industrial applications.
Author(s)
Keßler, Benjamin  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Dittrich, Dirk  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Brenner, Berndt  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Standfuß, Jens  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Leyens, Christoph  orcid-logo
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
Welding in the world  
Project(s)
DEAL
Funder
Fraunhofer-Gesellschaft FhG
Open Access
DOI
10.1007/s40194-021-01112-4
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • Alloy 617 occ

  • laser beam welding

  • Laser-MPNG

  • multi pass

  • Nickel-base material

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024