• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Dictionary learning for adaptive GPR landmine classification
 
  • Details
  • Full
Options
2019
Journal Article
Title

Dictionary learning for adaptive GPR landmine classification

Abstract
Ground-penetrating radar (GPR) target detection and classification is a challenging task. Here, we consider online dictionary learning (DL) methods to obtain sparse representations (SR) of the GPR data to enhance feature extraction for target classification via support vector machines. Online methods are preferred because traditional batch DL like K-times singular value decomposition (K-SVD) is not scalable to high-dimensional training sets and infeasible for real-time operation. We also develop Drop-Off MINi-batch Online Dictionary Learning (DOMINODL), which exploits the fact that a lot of the training data may be correlated. The DOMINODL algorithm iteratively considers elements of the training set in small batches and drops off samples which become less relevant. For the case of abandoned anti-personnel landmines classification, we compare the performance of K-SVD with three online algorithms: classical online dictionary learning (ODL), its correlation-based variant, and DOMINODL. Our experiments with real data from L-band GPR show that online DL methods reduce learning time by 36%-93% and increase mine detection by 4%-28% over K-SVD. Our DOMINODL is the fastest and retains similar classification performance as the other two online DL approaches. We use a Kolmogorov-Smirnoff test distance and the Dvoretzky-Kiefer-Wolfowitz inequality for the selection of DL input parameters leading to enhanced classification results. To further compare with the state-of-the-art classification approaches, we evaluate a convolutional neural network (CNN) classifier, which performs worse than the proposed approach. Moreover, when the acquired samples are randomly reduced by 25%, 50%, and 75%, sparse decomposition-based classification with DL remains robust while the CNN accuracy is drastically compromised.
Author(s)
Giovanneschi, F.
Mishra, K.V.
Gonzalez-Huici, M.A.
Eldar, Y.C.
Ender, J.H.G.
Journal
IEEE transactions on geoscience and remote sensing  
Open Access
DOI
10.1109/TGRS.2019.2931134
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024