• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Edge Computing aus Sicht der Künstlichen Intelligenz
 
  • Details
  • Full
Options
2018
Journal Article
Title

Edge Computing aus Sicht der Künstlichen Intelligenz

Abstract
Dieser Beitrag stellt die Schlüsseltechnologie der modernen KI vor: das maschinelle Lernen (ML) und speziell das Lernen mit künstlichen neuronalen Netzen. Er erklärt, wie ein solches Modell unmittelbar an den Orten der Datenentstehung gelernt werden kann ganz ohne Kommunikation von Rohdaten. Dieses Paradigma wird als verteiltes Lernen oder kurz Lernen an der Edge bezeichnet, im Gegensatz zum heute vorherrschenden Lernen in der Cloud. Künstliche Intelligenz ist in den letzten Jahren in unseren Alltag eingezogen, in Form von Sprachassistenten und Übersetzern, Objekt- und Gesichtserkennung, Produktempfehlungen und personalisierten Informationen. Die gemeinsame Technik hinter all diesen Fähigkeiten ist das maschinelle Lernen. Gemeinsamer Enabler von maschinellem Lernen und Bi g Data ist die nahezu exponentiell wachsende Verfügbarkeit an Ressourcen wie Rechenleistung und Speicherkapazität.
Author(s)
Hecker, Dirk  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mock, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sicking, Joachim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Voß, Angelika  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wirtz, Tim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Journal
Industrie 4.0 Management  
Language
German
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024