• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Synthesizing seismic diffractions using a generative adversarial network
 
  • Details
  • Full
Options
2020
Journal Article
Title

Synthesizing seismic diffractions using a generative adversarial network

Abstract
Diffracted waves carry high resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. Because of the low signal-to-noise ratio of diffracted waves, it is challenging to preserve them during processing and to identify them in the final data. It is, therefore, a traditional approach to pick manually the diffractions. However, such task is tedious and often prohibitive, thus, current attention is given to domain adaptation. Those methods aim to transfer knowledge from a labeled domain to train the model, and then infer on the real unlabeled data. In this regard, it is common practice to create a synthetic labeled training dataset, followed by testing on unlabeled real data. Unfortunately, such procedure may fail due to the existing gap between the synthetic and the real distribution since quite often synthetic data oversimplifies the problem, and consequently the transfer learning becomes a hard and non-trivial procedure. Furthermore, deep neural networks are characterized by their high sensitivity towards cross-domain distribution shift. In this work, we present deep learning model that builds a bridge between both distributions creating a semi-synthetic datatset that fills in the gap between synthetic and real domains. More specifically, our proposal is a feed-forward, fully convolutional neural network for imageto-image translation that allows to insert synthetic diffractions while preserving the original reflection signal. A series of experiments validate that our approach produces convincing seismic data containing the desired synthetic diffractions.
Author(s)
Durall, Ricard
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Tschannen, Valentin
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Pfreundt, Franz-Josef  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keuper, Janis  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts  
Conference
Society of Exploration Geophysicists (SEG International Exposition and Annual Meeting) 2020  
DOI
10.1190/segam2020-3415521.1
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024