• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. MultiPaths. A python framework for analyzing multi-layer biological networks using diffusion algorithms
 
  • Details
  • Full
Options
2021
Journal Article
Title

MultiPaths. A python framework for analyzing multi-layer biological networks using diffusion algorithms

Abstract
High-throughput screening yields vast amounts of biological data which can be highly challenging to interpret. In response, knowledge-driven approaches emerged as possible solutions to analyze large datasets by leveraging prior knowledge of biomolecular interactions represented in the form of biological networks. Nonetheless, given their size and complexity, their manual investigation quickly becomes impractical. Thus, computational approaches, such as diffusion algorithms, are often employed to interpret and contextualize the results of high-throughput experiments. Here, we present MultiPaths, a framework consisting of two independent Python packages for network analysis. While the first package, DiffuPy, comprises numerous commonly used diffusion algorithms applicable to any generic network, the second, DiffuPath, enables the application of these algorithms on multi-layer biological networks. To facilitate its usability, the framework includes a command line interface, reproducible examples, and documentation. To demonstrate the framework, we conducted several diffusion experiments on three independent multi-omics datasets over disparate networks generated from pathway databases, thus, highlighting the ability of multi-layer networks to integrate multiple modalities. Finally, the results of these experiments demonstrate how the generation of harmonized networks from disparate databases can improve predictive performance with respect to individual resources.
Author(s)
Marín-Llaó, Josep
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Mubeen, Sarah  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Perera-Lluna, Alexandre
Universitat Politècnica de Catalunya
Hofmann-Apitius, Martin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Picart-Armada, Sergio
Universitat Politècnica de Catalunya
Domingo-Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
Bioinformatics  
Open Access
DOI
10.24406/publica-r-265594
10.1093/bioinformatics/btaa1069
File(s)
Download (755.49 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • networks

  • systems biology

  • bioinformatic

  • Knowledge Graphs

  • algorithms

  • software

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024