• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Topological Reduction of Stationary Network Problems: Example of Gas Transport
 
  • Details
  • Full
Options
2020
Journal Article
Title

Topological Reduction of Stationary Network Problems: Example of Gas Transport

Abstract
The general method of topological reduction for the network problems is presented on example of gas transport networks. The method is based on a contraction of series, parallel and tree-like subgraphs for the element equations of quadratic, power law and general monotone dependencies. The method allows to reduce significantly the complexity of the graph and to accelerate the solution procedure for stationary network problems. The method has been tested on a large set of realistic network scenarios. Possible extensions of the method have been described, including triangulated element equations, continuation of the equations at infinity, providing uniqueness of solution, a choice of Newtonian stabilizer for nearly degenerated systems. The method is applicable for various sectors in the field of energetics, including gas networks, water networks, electric networks, as well as for coupling of different sectors.
Author(s)
Baldin, Anton  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Clees, Tanja  orcid-logo
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Klaassen, Bernhard  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Nikitin, Igor  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Nikitina, Lialia  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
International journal on advances in systems and measurements  
Project(s)
MathEnergy
Funder
Bundesministerium für Wirtschaft und Energie BMWi (Deutschland)  
Link
Link
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024