• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Evaluating the Alzheimer's disease data landscape
 
  • Details
  • Full
Options
2020
Journal Article
Title

Evaluating the Alzheimer's disease data landscape

Abstract
Introduction Numerous studies have collected Alzheimer's disease (AD) cohort data sets. To achieve reproducible, robust results in data‐driven approaches, an evaluation of the present data landscape is vital. Methods Previous efforts relied exclusively on metadata and literature. Here, we evaluate the data landscape by directly investigating nine patient‐level data sets generated in major clinical cohort studies. Results The investigated cohorts differ in key characteristics, such as demographics and distributions of AD biomarkers. Analyzing the ethnoracial diversity revealed a strong bias toward White/Caucasian individuals. We described and compared the measured data modalities. Finally, the available longitudinal data for important AD biomarkers was evaluated. All results are explorable through our web application ADataViewer (https://adata.scai.fraunhofer.de). Discussion Our evaluation exposed critical limitations in the AD data landscape that impede comparative approaches across multiple data sets. Comparison of our results to those gained by metadata‐based approaches highlights that thorough investigation of real patient‐level data is imperative to assess a data landscape.
Author(s)
Birkenbihl, Colin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Salimi, Yasamin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Domingo-Fernandez, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Lovestone, Simon
Department of Psychiatry, University of Oxford, Oxford, UK
Fröhlich, Holger  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Hofmann-Apitius, Martin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
Alzheimer's & dementia. Translational research & clinical interventions  
Project(s)
VirtualBrainCloud  
Funder
European Commission EC  
Open Access
DOI
10.1002/trc2.12102
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024