• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Nanostructured boron doped diamond electrodes with increased reactivity for solar-driven CO2 reduction in room temperature ionic liquids
 
  • Details
  • Full
Options
2020
Journal Article
Title

Nanostructured boron doped diamond electrodes with increased reactivity for solar-driven CO2 reduction in room temperature ionic liquids

Abstract
Conductive, boron doped diamond (BDD) is an extraordinary material with many applications in electrochemistry due to its wide potential window, outstanding robustness, low capacitance and resistance to fouling. However, in photoelectrochemistry, BDD usually requires UV light for excitation, which impedes e. g., usage in CO2 to fuel reduction. In this work, a heavily boron doped, nanostructured diamond electrode with enhanced light absorption has been developed. It is manufactured from BDD by reactive ion etching and presents a coral‐like structure with pore diameters in the nanometer range, ensuring a huge surface area. The strong light absorbance of this material is clearly visible from its black color. Consequently, the material is called Diamond Black (DB). Electrochemical and X‐ray photoelectron spectroscopy measurements performed at near‐ambient pressure conditions of water vapor demonstrate increased surface reactivity for the hydrogen‐terminated DB compared to oxidized surfaces. Depending on the surface termination, the wettability and hence the electrochemically accessible area can be changed. Photoelectrochemical conversion of CO2 was demonstrated using a Cu2O‐modified electrode in ionic liquids under solar illumination. High formic acid production rates at low catalyst deposition times can be obtained paired with an increased catalyst stability on the DB surface.
Author(s)
Knittel, Peter  orcid-logo
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Buchner, Franzsika
Helmholtz-Zentrum
Hadzifekzovic, Emina
Chemistry Research Laboratory
Giese, Christian  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Quellmalz, Patricia  orcid-logo
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Seidel, Robert
Helmholtz-Zentrum; Humboldt-Universität
Petit, Tristan
Helmholtz-Zentrum
Iliev, Boyan
IOLITEC Ionic liquids Technologies
Schubert, Thomas J.S.
IOLITEC Ionic liquids Technologies
Nebel, Christoph E.
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Foord, John S.
Chemistry Reseach Laboratory
Journal
ChemCatChem  
Project(s)
DIACAT  
Funder
European Commission EC  
Open Access
File(s)
Download (2.82 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1002/cctc.202000938
10.24406/publica-r-264492
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024