• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A fully coupled local and global optical-thermal model for continuous adjacent laser-assisted tape winding process of type-IV pressure vessels
 
  • Details
  • Full
Options
2021
Journal Article
Title

A fully coupled local and global optical-thermal model for continuous adjacent laser-assisted tape winding process of type-IV pressure vessels

Abstract
A numerical process simulation framework is introduced in this paper to describe and predict the process temperature evolution during the laser-assisted tape winding (LATW) process of a type-IV pressure vessel made of glass-reinforced high-density polyethylene (G/HDPE). A local optical-thermal model is fully coupled with a global thermal model for the simulation of continuous adjacent hoop winding cases. The predicted tape and substrate temperatures are compared with the experimental data to validate the process model's effectiveness. The inline temperature was measured by an infrared thermographic camera during the continuous winding. The continuous process temperature of the substrate is affected significantly due to the previously wound layers including the pressure vessel, and a gradual increase of the temperature of the roller and the air inside the liner. A considerable temperature increase calculated as 80-120°C takes place for the substrate during winding of two consecutive layers of (G/HDPE) prepreg tape at the liner ends. The influence of pressure vessel size on the tape and substrate temperatures is investigated for different liner radii using the validated process model. The peak substrate temperature is found to increase approximately 45°C by reducing the radius of the pressure vessel from 272 mm to 68 mm while maintaining all other process conditions constant.
Author(s)
Zaami, Amin
Schäkel, Martin
Baran, Ismet
Bor, Ton C.
Janssen, Henning  
Akkerman, Remko
Journal
Journal of composite materials : JCM  
Open Access
DOI
10.1177/0021998320944598
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024