• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. COVID-19 Knowledge Graph: A computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology
 
  • Details
  • Full
Options
2021
Journal Article
Titel

COVID-19 Knowledge Graph: A computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology

Abstract
The COVID-19 crisis has elicited a global response by the scientific community that has led to a burst of publications on the pathophysiology of the virus. However, without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale. Here, we present the COVID-19 Knowledge Graph, an expansive cause-and-effect network constructed from scientific literature on the new coronavirus that aims to provide a comprehensive view of its pathophysiology. To make this resource available to the research community and facilitate its exploration and analysis, we also implemented a web application and released the KG in multiple standard formats.
Author(s)
Domingo-Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Baksi, Shounak
Causality Biomodels
Schultz, Bruce
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Gadiya, Yojana
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Kark, Reagon
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Raschka, Tamara
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Ebeling, Christian
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Hofmann-Apitius, Martin
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Kodamullil, Alpha Tom
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Zeitschrift
Bioinformatics
Project(s)
Human pharmacome
Funder
Fraunhofer-Gesellschaft FhG
DOI
10.1093/bioinformatics/btaa834
File(s)
N-603296.pdf (238.87 KB)
Language
English
google-scholar
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Tags
  • Knowledge Graphs

  • COVID-19

  • cause-and-effect mode...

  • bioinformatic

  • knowledge-driven anal...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022