• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. COVID-19 Knowledge Graph: A computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology
 
  • Details
  • Full
Options
2021
Journal Article
Title

COVID-19 Knowledge Graph: A computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology

Abstract
The COVID-19 crisis has elicited a global response by the scientific community that has led to a burst of publications on the pathophysiology of the virus. However, without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale. Here, we present the COVID-19 Knowledge Graph, an expansive cause-and-effect network constructed from scientific literature on the new coronavirus that aims to provide a comprehensive view of its pathophysiology. To make this resource available to the research community and facilitate its exploration and analysis, we also implemented a web application and released the KG in multiple standard formats.
Author(s)
Domingo-Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Baksi, Shounak
Causality Biomodels
Schultz, Bruce  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Gadiya, Yojana  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Kark, Reagon
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Raschka, Tamara  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Ebeling, Christian  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Hofmann-Apitius, Martin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Kodamullil, Alpha Tom
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
Bioinformatics  
Project(s)
Human pharmacome
Funder
Fraunhofer-Gesellschaft FhG
Open Access
DOI
10.1093/bioinformatics/btaa834
File(s)
N-603296.pdf (238.87 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • Knowledge Graphs

  • COVID-19

  • cause-and-effect models

  • bioinformatic

  • knowledge-driven analysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024