• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Development of a bioreactor system for pre-endothelialized cardiac patch generation with enhanced viscoelastic properties by combined collagen I compression and stromal cell culture
 
  • Details
  • Full
Options
2020
Journal Article
Title

Development of a bioreactor system for pre-endothelialized cardiac patch generation with enhanced viscoelastic properties by combined collagen I compression and stromal cell culture

Abstract
Treatment of terminal heart failure still poses a significant clinical problem. Cardiac tissue engineering could offer autologous solutions for the replacement of nonfunctional myocardial tissue. So far, soft matrix construction and missing large-scale prevascularization prevented the application of sizeable cardiac repair patches. We developed a novel bioreactor system for semi-automatic compression of a collagen I hydrogel applying 16 times higher pressure than in previous studies. Resistance towards compression stress was investigated for multiple cardiac-related cell types. For scaffold prevascuarization, a tubular cavity was imprinted during the compaction process. Primary cardiac-derived endothelial cells (ECs) were isolated from human left atrial appendages (HLAAs) and characterized by fluorescence-activated cell sorting (FACS) and immunocytology. EC were then seeded into the preformed channel with dermal fibroblasts as interstitial cell component of the fully cellularized patch. After 8 days of constant perfusion culture within the same bioreactor, scaffold dynamic modulus and cell viability were analyzed. Endothelial proliferation and vessel maturation were examined by immunohistochemistry and transmission electron microscopy. Our design allowed for scaffold production and dynamic culture in a one-stop-shop model. Enhanced compression and cell-mediated matrix remodeling induced a significant increase in scaffold stiffness while ensuring excellent cell survival. For the first time, we could isolate HLAA-derived EC with proliferative potential. ECs within the central channel proliferated during flow culture, continuously expressing endothelial markers (CD31) and displaying basal membrane synthesis (collagen IV, ultrastructural analysis). After 7 days of culture, a complete endothelial monolayer could be observed. Covering cells aligned themselves in flow direction and developed mature cell-cell contacts.
Author(s)
Krziminski, Carolin
Chair of Tissue Engineering and Regenerative Medicine, Wuerzburg University Hospital, Wuerzburg, Germany
Kammann, Sebastian
Fraunhofer-Institut für Produktionstechnologie IPT  
Hansmann, Jan  
Fraunhofer-Institut für Silicatforschung ISC  
Edenhofer, Frank
Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany; Institute of Molecular Biology, University of Innsbruck, Austria; Research Center Dynamic Systems, Otto-von-Guericke-University, Magdeburg, Germany;
Dandekar, Gudrun  
Fraunhofer-Institut für Silicatforschung ISC  
Walles, Heike
Chair of Tissue Engineering and Regenerative Medicine, Wuerzburg University Hospital, Wuerzburg, Germany; Research Center Dynamic Systems, Otto-von-Guericke-University, Magdeburg, Germany; Institute of Molecular Biology, University of Innsbruck, Austria;
Leistner, Marcus
Chair of Tissue Engineering and Regenerative Medicine, Wuerzburg University Hospital, Wuerzburg, Germany; Research Center Dynamic Systems, Otto-von-Guericke-University, Magdeburg, Germany; University Medical Center Goettingen,
Journal
Journal of tissue engineering and regenerative medicine  
Open Access
DOI
10.1002/term.3129
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Fraunhofer-Institut für Silicatforschung ISC  
Keyword(s)
  • cardiac tissue engineering

  • left atrial appendage

  • plastic compression

  • scaffold prevascularization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024