• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. The role of balancing nanostructured silicon anodes and NMC cathodes in lithium-ion full-cells with high volumetric energy density
 
  • Details
  • Full
Options
2020
Journal Article
Title

The role of balancing nanostructured silicon anodes and NMC cathodes in lithium-ion full-cells with high volumetric energy density

Abstract
Silicon anodes offer a very promising approach to boost the energy density of lithium-ion batteries. While silicon anodes show a high capacity and, depending on the system, a good cycle stability in half-cells vs lithium, their integration in industrially applicable lithium-ion full-cells is still challenging. Balancing described as the capacity ratio of negative and positive electrode (n/p ratio) is a crucial necessity for the successful design of lithium-ion batteries. In this work, three different silicon based anode systems, namely carbon coated silicon nanowires, columnar silicon thin films and silicon-carbon void structures are compared in LIB full cells containing NMC111 cathodes. By varying the areal capacity of the NMC111 cathode, the influence of the balancing was investigated over a broad n/p range of 0.8−3.2. The aim was to find an ideal compromise between lithium plating suppression, high cycling stability and maximized energy density. To underline the high volumetric energy density, the columnar silicon thin films are additionally analyzed in multilayered pouch cells with NMC622 and NMC811 cathodes resulting in 605 Wh L−1 and 135 Wh kg−1 and even 806 Wh L−1 and 183 Wh kg−1 as demonstrated on stack level.
Author(s)
Baasner, Anne
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Reuter, Florian  orcid-logo
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Seidel, Matthias  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Krause, Andreas
Namlab
Pflug, Erik  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Härtel, Paul  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Dörfler, Susanne  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Abendroth, Thomas  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Althues, Holger  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Kaskel, Stefan  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
Journal of the Electrochemical Society  
Project(s)
BamoSa
KaSiLi
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Open Access
DOI
10.1149/1945-7111/ab68d7
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • fluoroethylene carbonate

  • design

  • solid-electrolyte-interphase

  • electrochemical performance

  • capacity loss

  • Life Cycle

  • film anode

  • battery

  • composite

  • surface chemistry

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024