• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Performance Evaluation of Wire Cloth Micro Heat Exchangers
 
  • Details
  • Full
Options
2020
Journal Article
Title

Performance Evaluation of Wire Cloth Micro Heat Exchangers

Abstract
The purpose of this study is to validate a thermal-hydraulic simulation model for a new type of heat exchanger for mass, volume, and coolant/refrigerant charge reduction. The new heat exchanger consists of tubes with diameters in the range of 1 m m and wires in the range of 100 m , woven together to form a 200×200× 80 m m 3 wire cloth heat exchanger. Performance of the heat exchanger has been experimentally evaluated using water as inner and air as outer heat transfer medium. A computational thermal and fluid dynamic model has been implemented in OpenFOAM®. The model allows variation of geometry and operating conditions. The validation of the model is based on one single geometry with an opaque fabric and air-side velocities between 1 and 7 m / s . The simulated and measured pressure drops are found to be in good agreement with a relative difference of less than 16%. For the investigated cases, the effective heat transfer coefficients are in very good agreement (less than 5%) when adapting the contact resistance between tubes and wires. The numerical model describes the fluid flow and heat transfer of the tested heat exchanger with adequate precision and can be used for future wire cloth heat exchanger dimensioning for a variety of applications.
Author(s)
Fugmann, Hannes  
Martens, S.
Balzer, R.
Brenner, M.
Schnabel, Lena  
Mehring, C.
Journal
Energies  
Open Access
DOI
10.24406/publica-r-261439
10.3390/en13030715
File(s)
N-581230.pdf (13.4 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Thermische Systeme und Gebäudetechnik

  • computational fluid dynamics

  • heat exchanger

  • heat transfer enhancement

  • performance figures

  • wire structure

  • Energieeffiziente Gebäude

  • Wärme- und Kälteversorgung

  • Materialien und Komponenten für Wärmetransformation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024