• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Mechanical microstructure characterization of discontinuous-fiber reinforced composites by means of experimental-numerical micro tensile tests
 
  • Details
  • Full
Options
2019
Journal Article
Titel

Mechanical microstructure characterization of discontinuous-fiber reinforced composites by means of experimental-numerical micro tensile tests

Abstract
The mechanical characteristics and especially the damage behavior of discontinuous‐fiber reinforced composites greatly depend on its constituents and also on its microstructural properties, namely the extent and distribution of fiber agglomerations, the fiber orientation distribution, and the fiber‐matrix interfaces. Several methods exist to individually analyze the different microstructural properties, such as µCT scanning to obtain the distribution of the fibers and their orientation and the Microbond test to obtain the interfacial characteristics. However, the interdependencies of the individual characteristics and the initiation of fracture with respect to the microstructure are still hard to analyze regarding a real composite structure. For this reason, the microscopic fra cture behavior of a glass fiber reinforced sheet molding compound (SMC) shall be investigated by means of a micro tensile test. Therefore, a specimen with a gauge length of approx. 1 mm, 0.3 mm width and 0.1 mm thickness is extracted from a composite plaque and put to an in‐situ observed tensile test. With a finite element model of each specimen, including the position and orientation of each fiber, the fiber‐matrix‐interface characteristics are extracted with a reverse‐engineering approach. The tests show a microstructure‐specific fracture behavior, which depends on the fiber dispersion, the fiber orientation, and the fiber‐matrix interfaces. The numerical simulations well agree with the physical experiments, making the obtained parameters suitable for further simulations of the investigated structure on a larger scale.
Author(s)
Schober, M.
Fraunhofer-Institut für Werkstoffmechanik IWM
Dittman, K.
Fraunhofer-Institut für Werkstoffmechanik IWM
Gumbsch, P.
Fraunhofer-Institut für Werkstoffmechanik IWM
Kuboki, T.
University of Western Ontario (UWO),
Hohe, J.
Fraunhofer-Institut für Werkstoffmechanik IWM
Zeitschrift
Proceedings in applied mathematics and mechanics. PAMM
Project(s)
Integrierte Entwicklung kontinuierlich-diskontinuierlich langfaserverstärkter Polymerstrukturen
Funder
Deutsche Forschungsgemeinschaft DFG
Konferenz
International Association of Applied Mathematics and Mechanics (GAMM Annual Meeting) 2019
Thumbnail Image
DOI
10.1002/pamm.201900120
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Werkstoffmechanik IWM
Tags
  • fiber reinforced comp...

  • fiber-matrix interfac...

  • mechanical characteri...

  • micromechanics

  • microstructure

  • micro-tensile tests

  • numerical simulation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022