• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models
 
  • Details
  • Full
Options
2019
Journal Article
Title

ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models

Abstract
Solid tumors impose immunologic and physical barriers to the efficacy of chimeric antigen receptor (CAR) T cell therapy that are not reflected in conventional preclinical testing against singularized tumor cells in 2-dimensional culture. Here, we established microphysiologic three-dimensional (3D) lung and breast cancer models that resemble architectural and phenotypical features of primary tumors and evaluated the antitumor function of receptor tyrosine kinase-like orphan receptor 1-specific (ROR1-specific) CART cells. 30 tumors were established from A549 (non-small cell lung cancer) and MDA-MB-231 (triple-negative breast cancer) cell lines on a biological scaffold with intact basement membrane (BM) under static and dynamic culture conditions, which resulted in progressively increasing cell mass and invasive growth phenotype (dynamic > static; MDA-MB-231 > A549). Treatment with ROR1-CAR T cells conferred potent antitumor effects. In dynamic culture, CART cells actively entered arterial medium flow and adhered to and infiltrated the tumor mass. ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of tumor cells located above and below the BM. The microphysiologic 3D tumor models developed in this study are standardized, scalable test systems that can be used either in conjunction with or in lieu of animal testing to interrogate the antitumor function of CART cells and to obtain proof of concept for their safety and efficacy before clinical application.
Author(s)
Wallstabe, Lars
Göttlich, Claudia
Fraunhofer-Institut für Silicatforschung ISC  
Nelke, Lena C.
Kühnemundt, Johanna
Schwarz, Thomas  
Fraunhofer-Institut für Silicatforschung ISC  
Nerreter, Thomas
Einsele, Hermann
Walles, Heike
Fraunhofer-Institut für Silicatforschung ISC  
Dandekar, Gudrun  
Fraunhofer-Institut für Silicatforschung ISC  
Nietzer, Sarah L.
Hudecek, Michael  
Journal
JCI insight  
Open Access
DOI
10.1172/jci.insight.126345
Additional link
Full text
Language
English
Fraunhofer-Institut für Silicatforschung ISC  
Keyword(s)
  • T-Lymphocytes

  • Receptors

  • Antigen

  • Adoptive cell

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024