• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Prediction of memory formation based on absolute electroencephalographic phases in rhinal cortex and hippocampus outperforms prediction based on stimulus-related phase shifts
 
  • Details
  • Full
Options
2018
Journal Article
Title

Prediction of memory formation based on absolute electroencephalographic phases in rhinal cortex and hippocampus outperforms prediction based on stimulus-related phase shifts

Abstract
Absolute (i.e. measured) rhinal and hippocampal phase values are predictive for memory formation. It has been an open question, whether the capability of mediotemporal structures to react to stimulus presentation with phase shifts may be similarly indicative of successful memory formation. We analysed data from 27 epilepsy patients implanted with depth electrodes in the hippocampus and entorhinal cortex, who performed a continuous word recognition task. Electroencephalographic phase information related to the first presentation of repeatedly presented words was used for prediction of subsequent remembering vs. forgetting applying a support vector machine. The capability to predict successful memory formation based on stimulus-related phase shifts was compared to that based on absolute phase values. Average hippocampal phase shifts were larger and rhinal phase shifts were more accumulated for later remembered compared to forgotten trials. Nevertheless, prediction based on absolute phase values clearly outperformed phase shifts and there was no significant increase in prediction accuracies when combining both measures. Our findings indicate that absolute rhinal and hippocampal phases and not stimulus-related phase shifts are most relevant for successful memory formation. Absolute phases possibly affect memory formation via influencing neural membrane potentials and thereby controlling the timing of neural firing.
Author(s)
Derner, M.
Jahanbekam, A.
Bauckhage, Christian  
Axmacher, N.
Fell, J.
Journal
The European journal of neuroscience  
DOI
10.1111/ejn.13878
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024