• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Hosting capacity of low-voltage grids for distributed generation
 
  • Details
  • Full
Options
2018
Journal Article
Title

Hosting capacity of low-voltage grids for distributed generation

Title Supplement
Classification by means of machine learning techniques
Abstract
A high amount of installed distributed generators (DG) in low-voltage grids, e.g. photovoltaic generators (PV), may cause serious problems due to overloading of electrical equipment and violation of voltage limits. The assessment of low-voltage grids regarding their hosting capacity for the installation of DG is a difficult task, because grid structures may be diverse and complex. In this article, we classify grids by means of machine learning techniques, in particular support vector machines (SVM). SVM learn to assess grids by means of sample data, that is, grids represented by characteristic features that were assessed by human domain experts (i.e., distribution system operators (DSO) staff). We show that this approach can significantly better reflect domain expert assessments compared to a technique we proposed earlier which is based on a stochastic load flow simulation procedure and a subsequent parametric stochastic model estimation. One key result of this article is that SVM with grid based features significantly outperform SVM using features from load flow simulations regarding the classification accuracy if both are trained with data that were assessed (labeled) by DSO staff. Experiments are based on data for 300 real rural and suburban low-voltage grids.
Author(s)
Breker, S.
Rentmeister, J.
Sick, B.
Braun, M.
Journal
Applied soft computing  
DOI
10.1016/j.asoc.2018.05.007
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024