• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Machine Learning Supporting Experimental Design for Product Development in the Lab
 
  • Details
  • Full
Options
2019
Journal Article
Title

Machine Learning Supporting Experimental Design for Product Development in the Lab

Abstract
An interactive decision support framework is presented that assists lab researchers in finding optimal product recipes. Within this framework, an approach for sequential experimental design for black box models in a multicriteria optimization context is introduced. An additional criterion involving the prediction error to design new experiments is used with the goal to get a reliable estimate of the Pareto frontier within a few experimental iterations. The resulting decision support approach accompanies the chemist through the whole workflow and supports the user via interactive, graphical elements.
Author(s)
Babutzka, Jens
Bortz, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Dinges, Andreas  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Foltin, Gregor  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Hajnal, David
Schultze, Hergen
Weiss, Horst
Journal
Chemie- Ingenieur- Technik  
DOI
10.1002/cite.201800089
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024