• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On the decay rate of the singular values of bivariate functions
 
  • Details
  • Full
Options
2018
Journal Article
Titel

On the decay rate of the singular values of bivariate functions

Abstract
In this work, we establish a new truncation error estimate of the singular value decomposition (SVD) for a class of Sobolev smooth bivariate functions $ \kappa {\,\in\,} L2(\Omega,Hs(D))$, $s{\,\geq\,} 0$, and $\kappa\in L2(\Omega,\dot{H}s(D))$ with $D \subset\mathbb{R}d$, where $Hs(D):=W{s,2}(D)$ and $\dot Hs(D):=\{v\in L2(D): (-\Delta){s/2}v\in L2(D)\}$ with $-\Delta$ being the negative Laplacian on $D$ coupled with specific boundary conditions. To be precise, we show the order $\mathcal{O}(M{-s/d})$ for the truncation error of the SVD series expansion after the $M$th term. This is achieved by deriving the sharp decay rate $\mathcal{O}(n{-1-{2s}/{d}})$ for the square of the $n$th largest singular value of the associated integral operator, which improves on known results in the literature. We then use this error estimate to analyze an algorithm for solving a class of elliptic PDEs with random coefficient in the multiquery context, which employs the Karhunen--Loève approximation of the stochastic diffusion coefficient to truncate the model.
Author(s)
Griebel, Michael
Li, Guanglian
Zeitschrift
SIAM journal on numerical analysis
Funder
Deutsche Forschungsgemeinschaft DFG
Thumbnail Image
DOI
10.1137/17M1117550
Language
English
google-scholar
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022