• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Analysis and optimization of flow around flexible wings and blades using the standard co-simulation interface MpCCI
 
  • Details
  • Full
Options
2017
Book Article
Titel

Analysis and optimization of flow around flexible wings and blades using the standard co-simulation interface MpCCI

Abstract
Certain applications require the concurrent consideration (and thus simulation) of phenomena from different physical disciplines, e.g., the fluid-structure interactions (FSI) where the flow has significant influence to the deformable boundary structure and vice versa. In this article, the co-simulation software MpCCI is described. It provides flexible algorithms and interfaces to couple different commercial and open-source software packages in order to solve multi-disciplinary simulation tasks. The capabilities in the area of FSI are shown in four distinct experiments. The MpCCI software package offers, on the one hand, a bi-directional coupling environment where specialized simulation tools from different software vendors can be combined at run-time. Moreover, MpCCI provides a file-based uni-directional data mapping. Both software products transfer data between not necessarily equal simulation discretizations. The underlying association and interpolation algorithms are described and the different bi-directional coupling strategies are explained. The results of an application of MpCCI in FSI problems are shown first in the HIRENASD benchmarks, which show good approximations to the measurements. Then a coupled simulation of a NACA airfoil is presented. The third example uses a fluid-structure coupling during a geometry optimization of an airfoil. The one-way mapping procedure is presented for the simulation of flow-induced vibrations of turbomachinery rotor blades.
Author(s)
Wirth, Nadja
Bayrasy, Pascal
Landvogt, Bettina
Wolf, Klaus
Cecutti, Francesco
Lewandowski, Tomasz
Hauptwerk
Recent Progress in Flow Control for Practical Flows
Thumbnail Image
DOI
10.1007/978-3-319-50568-8_15
Language
English
google-scholar
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022