• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Particle engulfment dynamics under oscillating crystal growth conditions
 
  • Details
  • Full
Options
2017
Journal Article
Title

Particle engulfment dynamics under oscillating crystal growth conditions

Abstract
To better understand the physical mechanisms behind particle engulfment dynamics under fluctuating solidification velocities, transient simulations are performed for a SiC particle in a silicon solidification system with oscillating growth rates using a rigorous finite-element model developed previously. Simulations reveal complicated behaviors that require a re-examination of the classical notion of a steady-state, critical growth velocity, v c, for particle engulfment. Under sinusoidal growth variations at a frequency representative of turbulent fluctuations in a large-scale melt, stable pushing states featuring nonlinear particle-growth front oscillations can arise, even when the maximum growth velocity slightly exceeds v c. However, higher-amplitude growth oscillations at the same frequency are shown to result in particle engulfment. Significantly, engulfment under such dynamic conditions can occur at average solidification rates far below the steady-state critical velocity, a behavior consistent with many experimental observations.
Author(s)
Tao, Y.
Sorgenfrei, T.
Jauß, T.
Cröll, A.
Reimann, C.  
Friedrich, J.  
Derby, J.J.
Journal
Journal of Crystal Growth  
DOI
10.1016/j.jcrysgro.2016.10.049
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024