• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Multi-Phase Friction and Wear Reduction by Copper Nanopartices
 
  • Details
  • Full
Options
2016
Journal Article
Titel

Multi-Phase Friction and Wear Reduction by Copper Nanopartices

Abstract
Finely dispersed copper nanoparticles were added as an additive to fully-formulated engine oils. The copper additive was in colloidal form, with an inner core of Cu2+ atoms covered by surfactants to form stable reverse micelles that are completely dispersible in the base oil. The tribological process to form protective films at the metal surface is comprised of three phases. Phase I can be considered a physical process involving the build-up of polar molecules by absorption to produce a friction modifier film, whereas phases II and III have to be treated as mechanochemical processes comprising a combination of redox reactions and a third body formation. The tribological performance was investigated using atomic force microscopy, a microtribometer, a pin-on-disk tribometer in combination with continuous and high-resolution wear measurements with radionuclide technique, and high pressure stressing in a thrust roller bearing test rig. In addition, the nanostructure of the additive was characterized by atomic force microscopy. Finally, the chemical composition of the metal surface was analyzed using photoelectron spectroscopy.
Author(s)
Scherge, M.
Böttcher, R.
Kürten, D.
Linsler, D.
Zeitschrift
Lubricants
Thumbnail Image
DOI
10.3390/lubricants4040036
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Werkstoffmechanik IWM
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022