• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On the nature of emitter diffusion and screen-printing contact formation on nanostructured silicon surfaces
 
  • Details
  • Full
Options
2017
Journal Article
Title

On the nature of emitter diffusion and screen-printing contact formation on nanostructured silicon surfaces

Abstract
In this paper, we study the impact of change in emitter diffusion profiles on the electrical characteristics of nanotextured surfaces formed by an inline plasma-less dry-chemical etching process. Our experimental results and process simulations suggest that a deeper highly doped region and a significantly higher inactive P concentration in the emitter plays a determining role in defining recombination, as well as the resistive losses in nanotextured surfaces. Low emitter saturation current densities on phosphorous-diffused surfaces are achievable after passivation with either SiNx (j0e,m in ≈ 81 fA/cm2) or AlOx/SiNx (j0e,m in ≈ 31 fA/cm2) if the emitter recombination channels are suppressed. Based upon macroscopic measurement of contact resistivity and microscopic analysis of the contact areas, we propose that the formation of numerous metal-semiconductor direct contact points on the peak and the plateaus of the nanostructures are mainly responsible for a low specific contact resistivity (rc,m in ≈ 1.2 mO · cm2) achievable in these surfaces.
Author(s)
Kafle, Bishal  
Freund, Timo
Schön, Jonas  
Werner, Sabrina  
Lorenz, Andreas  
Wolf, Andreas  
Saint-Cast, Pierre  
Clochard, Laurent
Duffy, Edward
Hofmann, Marc  
Rentsch, Jochen  
Journal
IEEE Journal of Photovoltaics  
DOI
10.1109/jphotov.2016.2626921
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • PV Produktionstechnologie und Qualitätssicherung

  • Photovoltaik

  • Silicium-Photovoltaik

  • Dotierung und Diffusion

  • Oberflächen: Konditionierung

  • Passivierung

  • Lichteinfang

  • Kontaktierung und Strukturierung

  • nanotexture

  • silicon

  • diffusion

  • screen-printing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024