• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Hyperspectral unmixing from incomplete and noisy data
 
  • Details
  • Full
Options
2016
Journal Article
Title

Hyperspectral unmixing from incomplete and noisy data

Abstract
In hyperspectral images, once the pure spectra of the materials are known, hyperspectral unmixing seeks to find their relative abundances throughout the scene. We present a novel variational model for hyperspectral unmixing from incomplete noisy data, which combines a spatial regularity prior with the knowledge of the pure spectra. The material abundances are found by minimizing the resulting convex functional with a primal dual algorithm. This extends least squares unmixing to the case of incomplete data, by using total variation regularization and masking of unknown data. Numerical tests with artificial and real-world data demonstrate that our method successfully recovers the true mixture coefficients from heavily-corrupted data.
Author(s)
Montag, M.J.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Stephani, H.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Journal of imaging  
Open Access
Link
Link
DOI
10.3390/jimaging2010007
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024