• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Mixed boundary conditions for FFT-based homogenization at finite strains
 
  • Details
  • Full
Options
2016
Journal Article
Titel

Mixed boundary conditions for FFT-based homogenization at finite strains

Abstract
In this article we introduce a Lippmann-Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann-Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann-Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton-Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.
Author(s)
Kabel, M.
Fliegener, S.
Schneider, M.
Zeitschrift
Computational mechanics
Project(s)
MERGE
Funder
Deutsche Forschungsgemeinschaft DFG
Thumbnail Image
DOI
10.1007/s00466-015-1227-1
Language
English
google-scholar
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Institut für Werkstoffmechanik IWM
Tags
  • composite materials

  • finite deformation

  • LippmannSchwinger equ...

  • FFT

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022