• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Limiting reiteration for real interpolation with logarithmic functions
 
  • Details
  • Full
Options
2016
Journal Article
Title

Limiting reiteration for real interpolation with logarithmic functions

Abstract
The real interpolation method X¯¯¯¯TH,q,b=(X0,X1)TH,q,b involving iterated logarithms with any number of iterations is considered. Reiteration relations of the types (X0,X¯¯¯¯0,q,a)TH,r,b and (X¯¯¯¯1,q,aX1)TH,r,b (0<TH<1) are investigated. Using any number of iterations allows in particular obtaining effects where the resulting space includes three iterated logarithms although the initial scale includes only the uniterated logarithm. Application to Lorentz-Zygmund spaces is given.
Author(s)
Doktorski, Leo  
Journal
Boletin de la Sociedad Matemática Mexicana  
DOI
10.1007/s40590-016-0116-8
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • real interpolation

  • logarithmic functors

  • Reiteration

  • limiting reiteration theorems

  • Lorentz-Zygmund spaces

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024