• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Clustering game behavior data
 
  • Details
  • Full
Options
2015
Journal Article
Title

Clustering game behavior data

Abstract
Recent years have seen a deluge of behavioral data from players hitting the game industry. Reasons for this data surge are many and include the introduction of new business models, technical innovations, the popularity of online games, and the increasing persistence of games. Irrespective of the causes, the proliferation of behavioral data poses the problem of how to derive insights therefrom. Behavioral data sets can be large, time-dependent and high-dimensional. Clustering offers a way to explore such data and to discover patterns that can reduce the overall complexity of the data. Clustering and other techniques for player profiling and play style analysis have, therefore, become popular in the nascent field of game analytics. However, the proper use of clustering techniques requires expertise and an understanding of games is essential to evaluate results. With this paper, we address game data scientists and present a review and tutorial focusing on the application of clustering techniques to mine behavioral game data. Several algorithms are reviewed and examples of their application shown. Key topics such as feature normalization are discussed and open problems in the context of game analytics are pointed out.
Author(s)
Bauckhage, Christian  
Drachen, Anders
Sifa, Rafet  
Journal
IEEE transactions on computational intelligence and AI in games  
DOI
10.1109/TCIAIG.2014.2376982
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024