• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Challenges in representation learning: A report on three machine learning contests
 
  • Details
  • Full
Options
2015
Journal Article
Titel

Challenges in representation learning: A report on three machine learning contests

Abstract
The ICML 2013 Workshop on Challenges in Representation Learning [http://deeplearning.net/icml2013-workshop-competition] focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.
Author(s)
Goodfellow, Ian J.
Erhan, Dumitru
Carrier, Pierre Luc
Courville, Aaron
Mirza, Mehdi
Hamner, Ben
Cukierski, Will
Tang, Yichuan
Thaler, David
Lee, Dong-Hyun
Zhou, Yingbo
Ramaiah, Chetan
Feng, Fangxiang
Li, Ruifan
Wang, Xiaojie
Athanasakis, Dimitris
Shawe-Taylor, John
Milakov, Maxim
Park, John
Ionescu, Radu
Popescu, Marius
Grozea, Cristian
Bergstra, James
Xie, Jingjing
Romaszko, Lukasz
Xu, Bing
Chuang, Zhang
Bengio, Yoshua
Zeitschrift
Neural Networks
Konferenz
Workshop on Challenges in Representation Learning 2013
Thumbnail Image
DOI
10.1016/j.neunet.2014.09.005
Language
English
google-scholar
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS
Tags
  • deep learning

  • machine learning

  • challenge

  • computer vision

  • face expression recognition

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022