• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Adaptive Sparse Grids in Reinforcement Learning
 
  • Details
  • Full
Options
2014
Aufsatz in Buch
Titel

Adaptive Sparse Grids in Reinforcement Learning

Abstract
We propose a model-based online reinforcement learning approach for continuous domains with deterministic transitions using a spatially adaptive sparse grid in the planning stage. The model learning employs Gaussian processes regression and allows a low sample complexity. The adaptive sparse grid is introduced to allow the representation of the value function in the planning stage in higher dimensional state spaces. This work gives numerical evidence that adaptive sparse grids are applicable in the case of reinforcement learning.
Author(s)
Garcke, Jochen
Klompmaker, Irene
Hauptwerk
Extraction of Quantifiable Information from Complex Systems
Thumbnail Image
DOI
10.1007/978-3-319-08159-5_9
Externer Link
Externer Link
Language
Englisch
google-scholar
SCAI
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022