• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems
 
  • Details
  • Full
Options
2014
Journal Article
Title

Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems

Abstract
Eukaryotic cell-free systems based on wheat germ and Spodoptera frugiperda insect cells were equipped with an orthogonal amber suppressor tRNA-synthetase pair to synthesize proteins with a site-specifically incorporated p-azido-l-phenylalanine residue in order to provide their chemoselective fluorescence labeling with azide-reactive dyes by Staudinger ligation. The specificity of incorporation and bioorthogonality of labeling within complex reaction mixtures was shown by means of translation and fluorescence detection of two model proteins: -glucuronidase and erythropoietin. The latter contained the azido amino acid in proximity to a signal peptide for membrane translocation into endogenous microsomal vesicles of the insect cell-based system. The results indicate a stoichiometric incorporation of the azido amino acid at the desired position within the proteins. Moreover, the compatibility of cotranslational protein translocation, including glycosylation and amber suppression-based incorporation of p-azido-l-phenylalanine within a cell-free system, is demonstrated. The presented approach should be particularly useful for providing eukaryotic and membrane-associated proteins for investigation by fluorescence-based techniques.
Author(s)
Quast, R.B.
Claussnitzer, I.
Merk, H.
Kubick, S.
Gerrits, M.
Journal
Analytical biochemistry  
DOI
10.1016/j.ab.2014.01.013
Language
English
Fraunhofer-Institut für Biomedizinische Technik IBMT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024