Options
2014
Journal Article
Title
Reaction monitoring using mid-infrared laser-based vibrational circular dichroism
Abstract
Changes in vibrational circular dichroism (VCD) were recorded on-line during a chemical reaction. The chiral complex nickel-(-)-sparteine chloride was hydrolyzed to free (-)-sparteine base in a biphasic system of sodium hydroxide solution and chloroform (CHCl3). Infrared (IR) and VCD spectra were iteratively recorded after pumping a sample from the CHCl3 phase through a lab-built VCD spectrometer equipped with a tunable mid-IR quantum cascade laser light source, which allows for VCD measurements even in the presence of strongly absorbing backgrounds. Time-dependent VCD spectra were analyzed by singular value decomposition and global exponential fitting. Spectral features corresponding to the complex and free (-)-sparteine could be clearly identified in the fitted amplitude spectrum, which was associated with an exponential decay with an apparent time constant of 127 min (t1/2 = 88 min).
Author(s)