• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. The smoothing effect of integration in $\mathbb{R}d$ and the ANOVA decomposition
 
  • Details
  • Full
Options
2013
Journal Article
Title

The smoothing effect of integration in $\mathbb{R}d$ and the ANOVA decomposition

Abstract
This paper studies the ANOVA decomposition of a $ d$-variate function $ f$ defined on the whole of $ \mathbb{R}d$, where $ f$ is the maximum of a smooth function and zero (or $ f$ could be the absolute value of a smooth function). Our study is motivated by option pricing problems. We show that under suitable conditions all terms of the ANOVA decomposition, except the one of highest order, can have unlimited smoothness. In particular, this is the case for arithmetic Asian options with both the standard and Brownian bridge constructions of the Brownian motion.
Author(s)
Griebel, M.
Kuo, F.Y.
Sloan, I.H.
Journal
Mathematics of computation  
DOI
10.1090/S0025-5718-2012-02578-6
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024