• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Piezoresponse force microscopy studies on (100), (110) and (111) epitaxial growth of BiFeO3 thin films
 
  • Details
  • Full
Options
2012
Journal Article
Title

Piezoresponse force microscopy studies on (100), (110) and (111) epitaxial growth of BiFeO3 thin films

Abstract
Bismuth ferrite (BiFeO3) is a magnetoelectric, multiferroic material with coexisting ferroelectric and magnetic orderings. It is considered as a candidate for the next generation of ferroelectric random-access memory devices because BiFeO3, in contrast to industrial ferroelectrics used today, does not contain the toxic element lead. Furthermore, its polarization values are higher than those of lead-based ferroelectrics. The magnitude of the polarization of a BiFeO3 film is dependent on its orientation and is related to the domain structure. This contribution presents and discusses the preparation of epitaxial BiFeO3 (BFO) thin films grown on SrRuO3/SrTiO3 substrates by pulsed laser deposition (PLD) and their characterization, especially by piezo force microscopy (PFM) and atomic force acoustic microscopy (AFAM). The thickness of an individual BFO film varies between 100 and 200 nm. The epitaxial nature of films in the crystallographic (100), (110), and (111) directions was confirmed by x-ray diffraction (XRD). Thin SrRuO3 layers, also prepared by PLD, were used as bottom electrode for the ferroelectric hysteresis measurements. Low frequency PFM measurements showed a monodomain structure for the as-grown (110) and (111) oriented samples. In BFO (100) films, different polarization variants were observed by ultrasonic piezo force microscopy (UPFM). The domain structure is reproduced from minimization of the electrostatic and elastic energies. Switching experiments using standard PFM as well as UPFM were carried out on the three samples with the objective of testing the coercive field and domain stability. The AFAM technique was used to map the elastic properties of the BFO thin-films at the micro- and nanoscale.
Author(s)
Fernandes, Rodrigo, P.
Batista, Leonardo
Castro, A.D.G
Salamanca-Riba, Lourdes
Cruz, Maria Paz
Muñoz-Saldaña, Juan
Espinoza-Beltran, Francisco, J.
Hirsekorn, Sigrun
Rabe, Ute  
Schneider, Gerold A.
Journal
MRS online proceedings library. Online resource  
Conference
International Materials Research Congress (IMRC) 2012  
DOI
10.1557/opl.2012.1701
Language
English
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Keyword(s)
  • piezoresponse

  • laser ablation

  • BI

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024