• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Convergence theorems of estimation of distribution algorithms
 
  • Details
  • Full
Options
2012
Book Article
Title

Convergence theorems of estimation of distribution algorithms

Abstract
Estimation of Distribution Algorithms (EDAs) have been proposed as an extension of genetic algorithms.We assume that the function to be optimized is additively decomposed (ADF). The interaction graph of the ADF function is used to create exact or approximate factorizations of the Boltzmann distribution. Convergence of the algorithmMN-GIBBS is proven.MN-GIBBS uses a Markov network easily derived from the ADF and Gibbs sampling. We discuss different variants of Gibbs sampling. We show that a good approximation of the true distribution is not necessary, it suffices to use a factorization where the global optima have a large enough probability. This explains the success of EDAs in practical applications using Bayesian networks.
Author(s)
Mühlenbein, Heinz  
Mainwork
Markov networks in evolutionary computation  
DOI
10.1007/978-3-642-28900-2_6
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024