Options
2012
Journal Article
Title
Orally active desulfated low molecular weight heparin and deoxycholic acid conjugate, 6ODS-LHbD, suppresses neovascularization and bone destruction in arthritis
Abstract
The regulation of angiogenesis is an interesting area to consider for novel therapeutic approaches to rheumatoid arthritis (RA). Chemically modified heparins have been developed as possible candidates for angiogenesis inhibitor; however, they have a major clinical drawback in exhibiting poor oral bioavailability. Here, orally absorbable O-desulfated low molecular weight heparin (ODS-LMWH) derivatives were newly synthesized by conjugating 2-O-or 6-O-desulfated LMWH with deoxycholic acid (DOCA) or bisDOCA (a dimer of DOCA), and their physicochemical properties, antiangiogenic potency and pharmacokinetic profiles were assessed. After selecting the best candidate among those derivatives, its therapeutic efficacy on arthritis was investigated in a murine collagen antibody-induced arthritis (CAIA) model. ODS-LMWH derivatives significantly inhibited the capillary-like tube formation of humanumbilical vein endothelial cells (HUVECs) and basic fibroblast growth factor (bFGF)-induced angiogenesis in the Matrigel plug assay. Among all the compounds, 6ODS-LHbD showed the highest oral bioavailability in rats (19.3%). In the CAIA mouse model, 6ODS-LHbD (10 mg/kg, p.o., S. I. D.) significantly inhibited neovascularization in the joint, the increase of hind-pawthickness, and the structural damage in the bone. Therefore, 6ODS-LHbD would be a promising candidate for an orally active drug for the treatment of RA.