• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1
 
  • Details
  • Full
Options
2011
Journal Article
Title

Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1

Abstract
Echinocandin drugs such as caspofungin (CASP), micafungin, and anidulafungin inhibit fungal cell wall biogenesis by blocking Fks1-mediated beta-glucan deposition into the cell surface. Candins have become suitable drugs to treat life-threatening diseases caused by several fungal species, including Candida albicans, that are pathogenic for humans. Here, we present the discovery of a novel CASP-induced flocculation phenotype of C. albicans, which formed large cell aggregates in the presence of CASP. High concentrations of sugars such as mannose or glucose inhibit CASP-induced flocculation and improve survival of C. albicans cells exposed to CASP. Notably, exposure of C. albicans cells to CASP triggers Efg1-dependent expression of the adhesin ALS1 and induces invasive growth on agar plates. Indeed, cells lacking either Efg1 or Als1 show strongly diminished CASP-induced flocculation, and the absence of Efg1 leads to marked CASP hypersensitivity. On the other hand, CASP-induced invasive growth is enhanced in cells lacking Efg1. Hence, CASP stress drives an Efg1-dependent response, indicating that this multifunctional transcriptional regulator, which is otherwise involved in filamentation, white-to-opaque switching, and virulence, also modulates cell wall remodeling upon CASP challenge. Taken together, our data suggest that CASP-induced cell wall damage activates Efg1 in parallel with the known cell integrity stress signaling pathway to coordinate cell wall remodeling.
Author(s)
Gregori, C.
Glaser, W.
Frohner, I.E.
Reinoso-Martin, C.
Rupp, S.  
Schüller, C.
Kuchler, K.
Journal
Eukaryotic cell  
Open Access
DOI
10.1128/EC.05187-11
Language
English
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024