• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Generation of small diameter, branched vascular systems by a combination of inkjet printing and multiphoton polymerization
 
  • Details
  • Full
Options
2011
Journal Article
Title

Generation of small diameter, branched vascular systems by a combination of inkjet printing and multiphoton polymerization

Abstract
Introduction: To date only single in vitro engineered tissues are transferred to clinical approaches due to todays inability to fabricate suitable, artifical vascular systems. Combining inkjet printing with high-resolution multiphoton polymerization (MPP) enables us to generate branched, tubular systems with diameters << 1 mm. New synthetic polymers were tailored to match the needs of the technical building process and the elastic properties of blood vessels. The polymers were biofunctionalized to achieve a close coating with endothelial cells (ECs). Experimental Methods: Based on numerical simulations, branched tubular scaffolds were fabricated by combining inkjet printing and MPP. Precursor polymers, cross linking agent, photo initiators and solvent additives were optimized to yield photo reactive inks with customizd E-moduli. Crosslinked polymers were modified with derivatized heparin and RGD and analyzed by XPS and colorimetric methods. Viability, proliferation, functionality of primary human microvascular ECs on the substrates was determined, using several assays and immunocytological stainings. Results: A set-up for integrating inkjet printing and MPP has been designed with which branched vessel scaffolds have been fabricated. The diameter of the tubes can range between 20 µm and several millimeters. Material compositions have been developed to achieve E-Moduli of 2-2000 MPa after crosslinking, the lower are similar to natural blood vessels. Suitable aftertreatment ensured biocompatibility of the processed polymers, thereafter thio-heparin and RGD have been covalently bound on the surface. On these biofunctionalized substrates an increased adhesion, viability and proliferation of ECs has been determined in comparison with unmodified substrates. EC-typical antigene expression has been observed by immunocytological stainings on all substrates. Conclusion: The presented combination of rapid prototyping techniques makes it possible to generate small diameter vessel-like systems that can be applied for supplying in vitro engineered tissues in a larger scale.
Author(s)
Kluger, Petra Juliane  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Borchers, Kirsten  
Refle, Oliver  
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Engelhard, Sascha
Fraunhofer-Institut für Lasertechnik ILT  
Meyer, Wolfdietrich  orcid-logo
Fraunhofer-Institut für Lasertechnik ILT  
Novosel, Esther  
Graf, Careen
Bierwisch, Claas  
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Schuh, Christian  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Seiler, Nadine
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Wegener, Michael  
Fraunhofer-Institut für Angewandte Polymerforschung IAP  
Krüger, Hartmut
Fraunhofer-Institut für Angewandte Polymerforschung IAP  
Jaeger, Raimund  orcid-logo
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Hirth, Thomas  
Gillner, Arnold  
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Tovar, Günter E.M.  
Fraunhofer-Institut für Lasertechnik ILT  
Journal
Biomedizinische Technik  
Conference
Deutsche Gesellschaft für Biomedizinische Technik (Jahrestagung) 2011  
Language
English
Fraunhofer-Institut für Angewandte Polymerforschung IAP  
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Fraunhofer-Institut für Lasertechnik ILT  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • Inkjet

  • biomaterial

  • tissue

  • Druckverfahren

  • Biotechnologie

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024