• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A framework for using self-organizing maps to analyze spatio-temporal patterns, exemplified by analysis of mobile phone usage
 
  • Details
  • Full
Options
2010
Journal Article
Title

A framework for using self-organizing maps to analyze spatio-temporal patterns, exemplified by analysis of mobile phone usage

Abstract
We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.
Author(s)
Andrienko, Gennady
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Andrienko, Natalia
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bak, Peter
Univ. Konstanz
Bremm, Sebastian
TU Darmstadt GRIS
Keim, Daniel A.
Univ. Konstanz
Landesberger, Tatiana von
TU Darmstadt GRIS
Pölitz, C.
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schreck, Tobias
TU Darmstadt GRIS
Journal
Journal of location based services  
Open Access
DOI
10.1080/17489725.2010.532816
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • spatio temporal data

  • geodata visualization

  • self-organizing Maps (SOM)

  • cluster analysis

  • visual analysis

  • Forschungsgruppe Visual Search and Analysis (VISA)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024