• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On structured output training: Hard cases and an efficient alternative
 
  • Details
  • Full
Options
2009
Journal Article
Title

On structured output training: Hard cases and an efficient alternative

Abstract
We consider a class of structured prediction problems for which the assumptions made by state-of-the-art algorithms fail. To deal with exponentially sized output sets, these algorithms assume, for instance, that the best output for a given input can be found efficiently. While this holds for many important real world problems, there are also many relevant and seemingly simple problems where these assumptions do not hold. In this paper, we consider route prediction, which is the problem of finding a cyclic permutation of some points of interest, as an example and show that state-of-the-art approaches cannot guarantee polynomial runtime for this output set. We then present a novel formulation of the learning problem that can be trained efficiently whenever a particular 'super-structure counting' problem can be solved efficiently for the output set. We also list several output sets for which this assumption holds and report experimental results.
Author(s)
Gärtner, Thomas  
Vembu, S.
Journal
Machine learning  
Conference
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2009  
DOI
10.1007/s10994-009-5129-3
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024