• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On subgroup discovery in numerical domains
 
  • Details
  • Full
Options
2009
Journal Article
Title

On subgroup discovery in numerical domains

Abstract
Subgroup discovery is a Knowledge Discovery task that aims at finding subgroups of a population with high generality and distributional unusualness. While several subgroup discovery algorithms have been presented in the past, they focus on databases with nominal attributes or make use of discretization to get rid of the numerical attributes. In this paper, we illustrate why the replacement of numerical attributes by nominal attributes can result in suboptimal results. Thereafter, we present a new subgroup discovery algorithm that prunes large parts of the search space by exploiting bounds between related numerical subgroup descriptions. The same algorithm can also be applied to ordinal attributes. In an experimental section, we show that the use of our new pruning scheme results in a huge performance gain when more that just a few split-points are considered for the numerical attributes.
Author(s)
Grosskreutz, Henrik  
Rüping, Stefan  
Journal
Data mining and knowledge discovery  
Conference
European Conference on Machine Learning (ECML) 2009  
European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD) 2009  
DOI
10.1007/s10618-009-0136-3
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024