Options
2023
Conference Paper
Title
Performance evaluation and application of real-time communication with 5G IIoT
Abstract
In communication systems, high data rates combined with low end-to-end latencies are prime necessities for allowing a wide variety of applications, e.g., streaming of video and data or in context of IoT Systems. In contrast, applications in Industry Automation require deterministic end-to-end latencies with guaranteed deadlines. In communication systems, data rates, reliability and the achievable end-to-end latency are often a trade-off (e.g., due to buffering of data, and overall systems-design). Further, most communication systems are optimized for high data rates only, yet, deterministic end-to-end latencies are required for most Industrial Use-Cases, which are still not considered well enough in research and standardization. In this paper we focus on low-latency communication, and, outline the importance of this research aspect. Consequently, we propose a novel Mini-Slot approach for 5G and beyond communication systems to tackle the problem of minimizing uplink- and downlink communication latencies in cellular networks under load. First evaluations of our approach in context of a feasibility study show promising results. As comparison in realistic experiments with Rel-15-based 5G Commercial off-the-shelf ( COTS ) hardware, a baseline scenario (unoptimized) shows a maximum latency up to 49.04 ms. In contrast to that, our novel mini-slot approach allows to lower the maximum end-to-end communication latency to 15.51 ms. This way, our mini-slot approach constitutes as enabler for low-latency communication by using Rel-15-based 5G COTS and User Equipment ( UE ) hardware for industrial use-cases, without the need to wait for further releases of 5G systems.
Author(s)
Open Access
Rights
CC BY-SA 4.0: Creative Commons Attribution-ShareAlike
Language
English