• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Covalent Trapping of Cyclic-Polysulfides in Perfluorinated Vinylene-Linked Frameworks for Designing Lithium-Organosulfide Batteries
 
  • Details
  • Full
Options
2023
Journal Article
Title

Covalent Trapping of Cyclic-Polysulfides in Perfluorinated Vinylene-Linked Frameworks for Designing Lithium-Organosulfide Batteries

Abstract
The strategic combination of redox-active triazine- or quinoxaline-based lithium-ion battery (LIB) mechanisms with the polysulfide ring-mediated lithium-sulfur battery (Li-SB) mechanism enabled the configuration of covalent organic-framework (COF)-derived lithium-organosulfide (Li-OrSB) battery systems. Two vinylene-linked frameworks were designed by enclosing polysulfide rings via postsynthetic framework sulfurization, allowing for the separate construction of triazine-polysulfide and quinoxaline-polysulfide redox couples that can readily interact with Li ions. The inverse vulcanization of the vinylene linking followed by the sulfurization-induced nucleophilic aromatic substitution reaction (SNAr) on the perfluorinated aromatic center of the COFs enabled the covalent trapping of cyclic-polysulfides. The experimentally observed reversible Li-interaction mechanism of these highly conjugated frameworks was computationally verified and supported by in situ Raman studies, demonstrating a significant reduction of polysulfide shuttle in a conventional Li-SB and opening the door for a COF-derived high-performing Li-OrSB.
Author(s)
Haldar, Sattwick
TU Dresden  
Wäntig, Albrecht
TU Dresden  
Ramuglia, Anthony
TU Dresden  
Bhauriyal, Preeti
TU Dresden  
Khan, Arafat
TU Dresden  
Pastoetter, Dominik
TU Dresden  
Isaacs, Mark
University College London  
De, Ankita
TU Dresden  
Brunner, Eike
TU Dresden  
Wang, Mingchao
TU Dresden  
Weidinger, Inez
TU Dresden  
Feng, Xinliang
TU Dresden  
Heine, Thomas
TU Dresden  
Schneemann, Andreas
TU Dresden  
Kaskel, Stefan  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
ACS energy letters  
DOI
10.1021/acsenergylett.3c01548
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • Batteries

  • Covalent organic frameworks

  • Electrolytes

  • Lithiation

  • Redox reactions

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024