• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Scalable Radar-based Roadside Perception: Self-localization and Occupancy Heat Map for Traffic Analysis
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Scalable Radar-based Roadside Perception: Self-localization and Occupancy Heat Map for Traffic Analysis

Abstract
4D mmWave radar sensors are suitable for roadside perception in city-scale Intelligent Transportation Systems (ITS) due to their long sensing range, weatherproof functionality, simple mechanical design, and low manufacturing cost. In this work, we investigate radar-based ITS for scalable traffic analysis. Localization of these radar sensors at city scale is a fundamental task in ITS. For flexible sensor setups, it requires even more effort. To address this task, we propose a self-localization approach that matches two descriptions of the "road": the one from the geometry of the motion trajectories of cumulatively observed vehicles, and the other one from the aerial laser scan. An Iterative Closest Point (ICP) algorithm is used to register the motion trajectory in the road section of the laser scan. The resulting estimate of the transformation matrix represents the sensor pose in a global reference frame. We evaluate the results and show that the method outperforms other map-based radar localization methods, especially for the orientation estimation. Beyond the localization result, we project radar sensor data onto a city-scale laser scan and generate a scalable occupancy heat map as a traffic analysis tool. This is demonstrated using two radar sensors monitoring an urban area in the real world.
Author(s)
Han, Longfei
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Xu, Qiuyu
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Kefferpütz, Klaus
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Lu, Peggy
Elger, Gordon  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
35th IEEE Intelligent Vehicles Symposium, IV 2024  
Conference
Intelligent Vehicles Symposium 2024  
Open Access
DOI
10.1109/iv55156.2024.10588397
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • Location awareness

  • Point cloud compression

  • Mechanical sensors

  • Laser radar

  • Roads

  • Radar

  • Trajectory

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024