• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Development of thermal residual stresses during manufacture of wind turbine blades
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Development of thermal residual stresses during manufacture of wind turbine blades

Abstract
Thermal residual stresses have a major impact on the bond line fatigue of wind turbine blades, which can initiate tunneling cracks in the adhesive layer of the bond lines early in the operational life of the blade. This work investigates the simulation accuracy for predicting thermal residual stresses within a thick bond line. The trailing-edge bond line strip of a 34 m blade was modeled with classical laminated plate theory (CLT) on the one hand and with finite element (FE) plate models of different fidelities on the other. For the model benchmark, the thermal residual stresses were on the basis of a thermal simulation. These develop during the cooling after a typical curing cycle of a wind turbine blade manufacturing process. It was found that the analytical model on the basis of CLT was in good agreement with the plate models of higher fidelity. Additionally, a full 3D FE blade model was used to calculate the shape distortion and the thermal residual stresses. It was found that the analytical model, which did not take into account effects stemming from the whole blade structure, underestimated the full 3D FE model.
Author(s)
Rosemeier, M.
Krimmer, A.
Antoniou, A.
Mainwork
NAWEA WindTech 2019  
Conference
International Conference on Future Technologies in Wind Energy (WindTech) 2019  
Open Access
DOI
10.1088/1742-6596/1452/1/012060
Additional link
Full text
Language
English
Fraunhofer-Institut für Windenergiesysteme IWES  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024